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Oscillator orbitals as expansion functions for the correlation holes have been checked by using 
them in two simple two electron systems, Ha and Li +. 

A contraction of the oscillators has been introduced and proved useful to ameliorate energy and 
convergence rate. 

Oszillatororbitale als Entwicklungsfunktion zur Darstellung des Korrelationsloches werden 
dutch Anwendung bei zwei einfachen Zweielektronensystemen H z und Li + gepr/ift. Eine Kontraktion 
der Oszillatoren wird eingef/ihrt, welche die Energie und die Konvergenzgeschwindigkeit verbessert. 

Essai d'orbitales oscillantes comme fonctions de base pour les trous de corr61ation dans deux 
syst6mes bi61ectroniques simples: Hz et Li +. 

L'introduction d'une contraction des ces orbitales s'est av6r6e utile pour am61iorer l'6nergie et la 
vitesse de convergence. 

1. Introduction 

Several considerations support the convenience of using in M O - C I  calculations 
a basis of localized orbitals (LO) rather than delocalized one. 

Suffice it to recall here that the heuristic value of the CI calculations is actually 
greatly emphasized because one is allowed to get a quantum-mechanical counter- 
part (electronic correlation included) of the intuitive "chemical" model of the 
bonding, which possibly might take into account the bond transferability, the 
inductive effect along the bonds, the short range forces arising from localized 
(e.g. reactive) perturbations, etc. The final goal of such a type of calculations 
should presently be to get semiempirical recipes to be used on molecular systems 
of large dimensions. 

The first step in this direction is to define a suitable set of localized virtual 
orbitals, connected with SCF LO's which can be obtained from the canonical 
ones by means of an appropriate orthogonal transformation. 

The pioneer work in this field is due, as far as we know, to Foster and Boys [1]: 
they introduced a new type of localized orbitals (exclusive orbitals) of fairly 
simple determination and defined, for each LO, a set of virtual localized orbitals 
(oscillator orbitals) with a view to building up additional Slater determinants 
for the CI process. This sort of virtual orbitals has however some deficiencies; 
the actual calculations made in the original paper [1] (on the formaldehyde 
molecule) are too limited to evidence them, therefore, as a matter of convenience, 
we will make reference to later results of our Laboratory [2] related to a type of 
virtual orbitals somewhat different from Foster and Boys's, both of them having 
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however the characterizing feature of being obtained through an orthogonal 
transformation from the set of virtual SCF MO's. The results of Ref. [2] show 
that it was not possible to obtain, for each exclusive orbital, more than two or 
three satisfactory virtual LO's, the other ones being completely delocalized and 
ineffective as regards the corresponding energy improvement. This is a con- 
sequence of the well known fact that the virtual SCF orbitals are not suitable to 
expand the correlation hole in the regions of higher electron density. Such an 
inconvenience is not overcome by enlarging the basis set; computational problems 
and storage facilities of the computer quickly become the limiting factors. 

Another proposal made by Boys aims to avoiding this inconvenience [3]. 
For each SCF LO a set of adjustment functions is defined; these functions, after a 
suitable orthonormalization process, performed in two stages, become the oscil- 
lator orbitals. These adjustment functions are not defined in terms of the virtual 
SCF orbitals, but directly originate in the SCF LO's according to a genealogical 
procedure. This is the peculiar feature of the oscillator orbitals (new version); 
this paper is devoted to a control of how such a set works. 

2. Definition of Oscillator Orbitals and Some Results for the H 2 Molecule 

Let us suppose to have, for a given molecule, a set of LO's obtained from a 
previous SCF calculation. Let us pick up one among them, (Pa, which describes, 
for example, a bond between the atoms A and B. The correlation between the 
electron pair belonging to this bond may be described, in a first approximation, 
by including the configurations arising from substitutions of q~a with polarized 
orbitals which cause the electrons to avoid each other, like (paxc, (P~Yc, q~zc. The 
subscript c emphasizes that the most suitable origin of the polarization function 
lies in the charge center of the distribution q~* (p, with axes parallel to the principal 
axes of the inertia tensor of such a charge distribution. 

This statement is intuitively acceptable because such a procedure corresponds 
to expand at first the most important part of the correlation hole. An empirical 
verification may be found e.g. in Ref. [2]. 

Boys [3] extends this idea and defines accordingly a system of adjustment 
functions: - _ p q 

q) ~vqs - ~p ,xc  Yc ~ �9 

From them one can obtain the oscillator orbitals ~p,pqs, after a suitable ortho- 
normalization process (see Ref. [3] for a detailed description) which preserves 
any symmetry present among the ~p,pq~, maximizes the overlap between the oscil- 
lator orbital and the original adjustment function and retains (P~ooo = ~P,. The 
virtual SCF space is therefore completely discarded. The adjustment functions 
are sufficiently general (no limitations are imposed on the integers p, q, s) to 
consider the set as complete. 

The practical use of the oscillator orbitals requires a systematization of the 
computing machinery going beyond the limits of a simple investigation as the 
present one. It may be recalled here that a promising suggestion was made by 
Boys himself in another paper [4]. The numerical results reported in this paper 
were obtained by means of an exact expansion of the oscillator orbitals into 
Slater-type atomic orbitals (STO's). 



44 G. Alagona and J. Tomasi :  

Table 1. Some results f o r  H 2 molecule ~ 

SCF wavefunction 

Center STO ~ Coeff. 

Oscillator orbital CI wavefunction 

Orbital Coeff. 

1 ls  1.14 
1 2p~ 1.77 
2 Is 1.83 
2 2s 1.83 
2 2p~ 1.83 
2 3s 1.83 
3 ls  1.14 
3 2p~ 1.77 
Energy: - 1.13345 

0.58685 
0.03196 

-0 .01777 
-0 .02673 

0.00000 
-0 .06351 

0.58685 
-0 .03196 

~.  0.99332 
~az~ -0 .09206 
~aXc --0.04914 
~aYc --0.04914 

Energy: - 1.15061 

Geometry  

Center x y z 

1 0.0 0.0 - 0.7004 
2 0.0 0.0 0.0 
3 0.0 0.0 0.7004 

Energies and distances in a. u. 

A first test has been performed on the hydrogen molecule, using as a starting 
point a good SCF wavefunction [5] whose basis set is characterized by having 
STO's centered also on the molecular midpoint (see Table 1). The corresponding 
SCF energy ( -  1.13345 a.u.) is sufficiently near the Hartree-Fock limit (the latter 
being -1.133629 a.u.) to consider any further energy improvement as being due 
to correlation. Inclusion of the first three oscillator orbitals, having all p + q + s = 1, 
in the CI process leads to an energy of - 1.15061 a.u., with an improvement over 
the SCF value of -0 .01716 a.u., corresponding to 41% of the correlation energy. 

The SCF basis set being quite extended, it is obvious to forecast that the 
conventional CI method works in this case as much as possible. In fact, if one 
uses the SCF basis set implemented by some n virtual orbitals (STO's 2px and 
2py having the same orbital exponent as the 2pz STO's already present in the set) 
one obtains E =  1.17102a.u., i.e. ~ 92% of the correlation energy. Confining 
ourselves to the three best configurations ( la , ,  In and 1~) we get a total energy of 
-1.15945 a.u., which corresponds to an energy improvement over the SCF 
value of -0.026002 a.u., (64 % of the correlation energy) decidedly better than 
that obtained using oscillator orbitals. 

A closer analysis shows that the main differences are in the a part. In fact a 
CI calculation with the first excited a configuration leads to A E = -0.015748 a.u. 
and the corresponding one with q~azc leads to AE=-0.010077,  whereas the 
conventional method with configurations ln ,  2 and 1~, 2 leads to AE = - 0.011287 a.u., 
to be compared with A E = -0.007663 obtained with r and q~aYc" 

For other comparisons the reader is deferred to other CI results available in 
the literature, e.g. to the paper of Weiss, McLean and Yoshimine [6]. 
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Such comparisons may result more favourable to the oscillator orbitals 
than the present ones, but we are here especially interested in pointing out that 
even the oscillator orbitals show some deficiencies in the expansion of the corre- 
lation. The main reason for such a poor behaviour seems to lie in the fact that 
the multiplication of the localized orbital by positive powers of the coordinates, 
though giving the correct shape to the adjustment functions, excessively spreads 
out the charge distribution. The fact may be easily verified in the preceding example 
if one compares the spatial density distribution of the o- u natural orbital with that 
arising from the q),z~ function. 

It would be of some interest to look for a correction in this sense to all the 
oscillator orbitals. The simplest way to obtain it is the introduction in the oscillator 
orbitals of a sort of contracting factor. 

In the next section are reported some results obtained with an exponential 
contraction factor. 

3. Contracted Oscillator Orbitals 

For the contraction factor we have tentatively adopted the form exp(-kr~),  
with k positive, r~ being the distance from the orbital charge center. 

Such a choice was suggested by practical reasons: budget restrictions have 
not allowed us to extend the calculations on polycentric systems to oscillators 
having a degree (i.e. sum of the exponents p, q, s) higher than one, which are 
necessary to test how a contraction factor works. As a consequence we considered 
the simpler case of an atomic system, and in this case the form chosen is the most 
suitable for expanding oscillator orbitals in terms of STO's. 

When one deals with a monocentric system, it is convenient to re-state the 
adjustment functions in spherical coordinates. The expression: 

m m n m ~Pa,Z,,k -- (p, rc Yl (0, (p) exp(-- krc), 

where Yz"(O, cp) is a real spherical harmonic, has the advantage of taking directly 
into account the radial correlation. Terms like v~,,ooo do not actually appear 
in the original definition. Of course this definition contains also the older: for 
example v-P,11oo = q~,rc yO corresponds to ~,ool = q~aZc, etc. The orthonormaliza- 
tion process (Boys' one may be conserved, with minor modifications) will lead 
to oscillators having the correct nodal surfaces. 

For  a numerical test we have chosen the Li + ion. The SCF wavefunction, 
reported in Table 2, was taken from an early work of our Laboratory [7] and the 
corresponding energy is, again, very close to the H - F  limit ( -  7.2364135 a.u. [8]). 

A first set of calculations was made without contraction factor (k = 0). To 
evidence the convergence rate different cases are reported in Table 3. Column 2 
reports the oscillator orbitals considered in each case, the notation should be 
evident: the symbols 3(2p) and 5(3d) respectively indicate the sets of three p-type 
oscillators (pal lm and of five d-type oscillators qOa22m. Column 3 reports the energy 
increment with respect to the SCF value, obtained by complete diagonalization 
of the corresponding secular matrix. 
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Table 2. SCF wavefunction for Li + 

Basis orbitals  Coefficients 

n l m ( 

1 0 0 2.448 0.88935561 
1 0 0 4.58 0.12546063 
2 0 0 5.00 0.00011982 

E = -7 .236412  

Table 3. CI  results for Li + with some sets o f  osciUator orbitals 

Wave function Oscillator set Wi thou t  contract ion With contract ion 

AE k AE 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

r -0 .013113 
r, r 2 -0 .014632 
r, r 2, r 3 -0 .015126 
3(2p) - 0.013799 
r, 3(2p) - 0.026449 
r, r 2, 3(2p) -0 .027864 
r, r 2, r a, 3(2p) -0 .028432 
3 (2p), 5(3d) -0 .014212 
r, 3(2p), 5(3d) -0 .026817 
r, r z, 3(2p),5 (3d) -0 .028235 
r, r z, r 3, 3 (2p), 5(3d) - 0.028767 

0.26 -0 .01390  
1.23 -0 .01561 
1.23 -0 .01582 
1.26 -0 .02154 
0.6 -0 .03170 
1.2 - 0.03631 
1.4 - 0.03652 
1.5 - 0.02344 
0.65 -0 .03300  
1.34 -0 .03833 
1.46 -0 .03842 

O. 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2TO k 
0.0 / I I I I I I I I I 1 

-0.01 

--0 021 ~ 4 

--0.03 

--0.04 

Fig. 1. d E  dependence on the contract ion factor k for all the Li + wavefunctions listed in Table 3 
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The first three wavefunctions contain only radial terms. Wavefunction 
4 contains Boys' oscillators of the first degree and wavefunction 7 those of the 
first and second degree. Energies for wavefunctions 3, 7 and 11 are the approxi- 
mations, within the set here employed, of the S, P and D limits for the Li § ion; 
a comparison with accurate results is performed in Table 4. 

As a further step, in each of the wavefunctions of Table 3 a contraction factor 
was introduced, equal for all the oscillator orbitals included in the wavefunction. 
Results are graphically reported in Fig. 1. Each curve refers to a different wave- 
function (the reference numbers are the same as in Table 3) and shows how 
energy changes when contraction factor increases. The optimal values of k and 
the corresponding energy improvements are reported in the last two columns 
of Table 3. 

When only the first radial oscillator is included in the calculation, the optimum 
value of the contraction factor is low (wavefunction 1), whereas by enlarging the 
number of radial oscillators the wavefunction becomes more and more insensitive 
to the contraction factor (wavefunctions 2 and 3). Contraction factors for the first 
angular oscillators are larger than for radial oscillators (wavefunctions 4 and 8). 
The optimum k values for more complete wavefunctions are easily rationalized 
in comparison with the values of the simpler aforementioned cases. The energy 
improvement due to the contraction factor is sensible especially when a larger 
number of oscillators is employed. 

Table 4. Comparison of energies for Li + (a.u.) 

Accurate results This paper 
%d k = 0 %d k best %a 

HF -7.236413" 0 -7.236412 0 -7.236412 0 
HF+S - 7.25242 b 37.3 -7.25153 35.2 -7.25221 36.8 
HF § S + P - 7.27575 b 91.7 -7.26484 66.3 -7.27301 85.3 
HF + S + P + D - 7.27845 b 98.0 - 7.26512 66.9 - 7.27481 89.5 
Exper. - 7.2798 c - -  --  

" Ref. [8]. 
b Ref. [9]. 

Ref. [10]. 
a % of the correlation energy (with allowance for relativistic energy). 

A comparison with accurate results is made in Table 4. With three radial 
oscillators, 98 % of the corresponding correlation energy is accounted for. Going to 
superior limits, 88 % of the S + P correlation energy is reproduced and 74.5 % of 
the S + P + D value. Such results are favourably compared with limited CI 
performed on large basis sets. 

On wavefunction 6, which seems to us to be an acceptable compromise 
between accuracy and simplicity, the contraction factors of the radial oscillators 
and those of the angular ones were allowed to vary independently. As one could 
expect, on the basis of the results of Fig. 1, the new values do not noticeably 
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differ from the previous ones: k ( rad)= l .1  and k(ang)=l .3 .  Also the energy 
does not change appreciably: 0.03640 against 0.03636 a.u. 

The quite limited checks on oscillator orbitals here reported may give an 
answer only to a part of the question about the convenience of using oscillators 
in actual molecular calculations. The whole ~arthonormalization procedure for 
systems having more than two electrons must be checked carefully and appropriate 
integration techniques for calculating secular matrix elements are necessary. In 
any case the introduction of some sort of contraction factor, which at least for 
inner shells may be chosen equal for all the pertinent oscillators, can improve 
the energy and even the convergence rate. 

Appendix 

On Second Order CI Calculations 

When one tries to improve a SCF wavefunction by means of a CI treatment, 
one is strongly exposed to the temptation of confining the calculation to the second 
order only. Two reasons may be alleged for: the calculations are far simpler, 
a quite limited number of the secular matrix elements being necessary, and the 
results are easily interpreted in terms of effects on a single SCF orbital. The goal 
mentioned in the introduction, to get semiempirical recipes useful to deal with 
large molecules, could be in this way facilitated. 

The application of a perturbative treatment to an oscillator interaction 
problem requires some manipulations on the zeroth-order hamiltonian (see 
Ref. [-11]). In fact the usual perturbative treatment is not possible because we 
have not expansion functions which are eigenfunctions with known eigenvector 
of Ho. A way of circumventing this difficulty is to define a new imperturbed 
hamiltonian 

and a new perturbation 

HD =/-/n~-+- ~ <il Vii> li> (il 
i 

v ' =  v -  y. (i l  vl i> li> <il. 
i 

Here the set Ii), formed by the oscillators together with the exclusive orbital [0), 
is considered orthonormal and complete; i.e. 

( i l j )  =c~, a, ~, [i) (i] = 1. 
i 

With such a partition of the complete hamiltonian, the second order energy, 
in the Rayleigh-Schr6dinger treatment is written as: 

E(2) ~-~ Z ( ( 0 [HI0 )  - ( i l H [ i ) )  -1 (0[ V [ k )  2 . (1) 
i~0  
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Fig. 2. Comparison of exact and second order energy improvement for wavefunction 6 of Table 3 

Such an express ion is f requent ly  employed ,  even with the convent iona l  v i r tual  
orbi tals .  

In this append ix  we wish to po in t  out, using a numer ica l  example  taken  f rom 
the preceding  calculat ions,  tha t  such a fo rmula  m a y  give somet imes  a very p o o r  
approx ima t ion .  Fig. 2 repor t s  the energy changes for wavefunct ion 6 of  Li  + 
vary ing  the con t rac t ion  factor  ca lcula ted  ei ther exact ly (curve A E,ii,g , the  same 
as in Fig. 1) or  accord ing  to Eq. (1). Similar  t rends  have been found also for the  
o ther  wavefunct ions  cons idered  in Fig. 1. 
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